The effect of hybridization-induced secondary structure alterations on RNA detection using backscattering interferometry
نویسندگان
چکیده
Backscattering interferometry (BSI) has been used to successfully monitor molecular interactions without labeling and with high sensitivity. These properties suggest that this approach might be useful for detecting biomarkers of infection. In this report, we identify interactions and characteristics of nucleic acid probes that maximize BSI signal upon binding the respiratory syncytial virus nucleocapsid gene RNA biomarker. The number of base pairs formed upon the addition of oligonucleotide probes to a solution containing the viral RNA target correlated with the BSI signal magnitude. Using RNA folding software mfold, we found that the predicted number of unpaired nucleotides in the targeted regions of the RNA sequence generally correlated with BSI sensitivity. We also demonstrated that locked nucleic acid (LNA) probes improved sensitivity approximately 4-fold compared to DNA probes of the same sequence. We attribute this enhancement in BSI performance to the increased A-form character of the LNA:RNA hybrid. A limit of detection of 624 pM, corresponding to ∼10(5) target molecules, was achieved using nine distinct ∼23-mer DNA probes complementary to regions distributed along the RNA target. Our results indicate that BSI has promise as an effective tool for sensitive RNA detection and provides a road map for further improving detection limits.
منابع مشابه
The safety of a landmine detection system using graphite and polyethylene moderator
Background: Several landmine detection methods, based on nuclear techniques, have been suggested up to now. Neutron-induced gamma emission, neutron and gamma attenuation, and fast neutron backscattering are the nuclear methods used for landmine detection. In this paper an optimized (safe and effective) moderating structure using an 241Am-Be neutron source for detecting landmines has been invest...
متن کاملدورگهسازی در محل؛ اصول و کاربردها : مقاله مروری
In situ hybridization (ISH) is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important ...
متن کاملطراحی، ساخت و مشخصه یابی پله های فازی شیشه ای برای کاربرد در تداخل سنجی جابجایی فاز
In this paper, we report on the design and fabrication of a low-cost phase shifter for application in phase shifting interferometry. Phase shifting interferometry is a powerful method for surface characterization. It uses interference data recorded during a series of predetermined phase shifts to recover the induced phase by the object surface. These controlled phase shifts are typically perfor...
متن کاملComparative Phylogenetic Perspectives on the Evolutionary Relationships in the Brine Shrimp Artemia Leach, 1819 (Crustacea: Anostraca) Based on Secondary Structure of ITS1 Gene
This is the first study on phylogenetic relationships in the genus Artemia Leach, 1819 using the pattern and sequence of secondary structures of internal transcribed spacer 1 (ITS1). Significant intraspecific variation in the secondary structure of ITS1 rRNA was found in Artemia tibetiana. In the phylogenetic tree based on joined primary and secondary structure sequences, Artemia urmiana and pa...
متن کاملThe effect of source shield on landmine detection
Background: Several landmine detection methods, based on nuclear techniques, have been suggested during the recent years. Neutron energy moderation, neutron-induced gamma emission, neutron and gamma attenuation, and fast neutron backscattering are nuclear-based methods used for landmine detection. The aim of this study is to use backscattered neutron for landmine detection. Materials ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2013